www.eprace.edu.pl » rozwoj-sieci-lokalnych » Tworzenie sieci » Ethernet

Ethernet

Ethernet jest dobrze znaną i szeroko używaną techniką sieciową o topologii szynowej. Został on opracowany przez Xerox Corporation's Palo Alto Research Center we wczesnych latach siedemdziesiątych. Była to sieć półdupleksowa, w której urządzenia łączone były za pomocą grubego kabla koncentrycznego. Prędkość przesyłania sygnału wynosiła 10 Mbps. Obecnie ten typ sieci znany jest jako PARC Ethernet lub Ethernet I. Nazwy te zostały wprowadzone dopiero po utworzeniu innych, nowych form Ethernetu w celu umożliwienia ich rozróżniania. Jednym z pierwszych kroków było zatwierdzenie Ethernetu jako samodzielnego protokołu sieciowego, który do określenia rozmiarów ramki nie musiałby już korzystać z protokołów warstwy sieci i transportu. Oryginalny Ethernet używał bardzo prymitywnej metody znanej jako wielodostęp do łącza sieci z badaniem stanu kanału lub metody CSMA. Jej istota polegała, że stacja, która chciała przesyłać dane, musiała najpierw upewnić się, że jest to możliwe "nasłuchując", czy linie przesyłowe (kanały) są wolne. Usprawnienie polegało na dodaniu możliwości wykrywania kolizji. Nowa metodologia dostępu do nośnika, zastosowana w Ethernecie II, nazwana została wielodostępem do łącza sieci z badaniem stanu kanału i wykrywaniem kolizji CSMA/CD.

Ethernet jest bogatym i różnorodnym zbiorem technologii. Sieci Ethernet mogą pracować w paśmie podstawowym lub mogą być szerokopasmowe, pełnodupleksowe lub półdupleksowe. Mogą wykorzystywać jeden z pięciu różnych nośników i pracować z prędkościami z zakresu od 10 Mbps do 1Gbps.

Na sprzęt, który może być używany do obsługi sieci Ethernet, składają się:

Członkowie organizacji IEEE rozpoczęli swoje wysiłki standaryzacyjne od zgrupowania niezbędnych funkcji sieci lokalnych w moduły czy też warstwy, bazując na kolejności zdarzeń następujących podczas normalnej sesji komunikacyjnej. Stworzyli oni własny stos protokołów, nie przystający ściśle do modelu referencyjnego OSI.

Specyfikacje serii IEEE 802 dzielą warstwę łącza danych modelu OSI na dwie odrębne części. Ich nazwy pochodzą od nazw kontrolowanych przez nie funkcji, a są to:

Wspólnie warstwy LLC i MAC tworzą jądro Ethernetu. Umożliwiają one umieszczanie danych w ramkach oraz adresowanie ich, co pozwala na przesyłanie ich do miejsca przeznaczenia.

Warstwa LLC jest wyższym z dwóch składników warstwy łącza danych. Izoluje ona protokoły wyższej warstwy od właściwej metody dostępu do nośnika. Sterownie łączem danych jest mechanizmem uniezależniającym protokoły warstw sieci i transportu od różnych odmian architektury sieci LAN. Dzięki temu protokoły wyższych warstw nie muszą wiedzieć, czy będą przesyłane poprzez Ethernet, Token Ring czy też Token Bus. Nie musza również wiedzieć, jakiej specyfikacji warstwy fizycznej będą używać. Sterownie LLC udostępnia wspólny interfejs dla wszystkich architektur i odmian sieci LAN zgodnych ze specyfikacją 802.

Warstwa MAC jest niższym składnikiem warstwy łącz danych w architekturze IEEE. Odpowiada ona za połączenie z warstwą fizyczną oraz zapewnia udany przebieg nadawania i odbioru. Składają się na nią dwie funkcje: nadawania i odbioru.

Warstwa sterownia dostępem do nośnika odpowiada za opakowywanie wszystkich danych otrzymanych z warstwy LLC w ramki. Prócz danych ramka zawiera strukturę oraz wszystkie adresy potrzebne do przesłania jej do miejsca przeznaczenia. Warstwa MAC jest także odpowiedzialna za przeprowadzanie testu integralności danych, używanego do sprawdzania, czy zawartość ramki nie została uszkodzona lub zmieniona podczas transmisji. Warstwa sterowania dostępem do nośnika zawiera również mechanizmy potrafiące określać - na podstawie mechanizmów warstwy fizycznej - czy pasmo komunikacyjne jest dostępne, czy też nie. Jeśli jest dostępne, ramki danych są przekazywane warstwie fizycznej do przesłania. Jeśli nie, warstwa MAC uruchamia swój binarny wykładniczy algorytm zwrotny, który generuje pseudolosowy czas oczekiwania, po upływie którego dopiero może nastąpić kolejna próba transmisji. Ostatnią ważną funkcją warstwy sterowania dostępem do nośnika jest monitorowanie statusu transmitowanych ramek polegające na wykrywaniu wszelkich znaków sygnalizujących zajście konfliktu. Gdy warstwa MAC wykryje konflikt jednej ze swoich ramek, określa, które dane muszą być ponownie wysłane, uruchamia algorytm zwrotny i ponownie próbuje wysłać ramkę. Algorytm zwrotny jest powtarzany, dopóki próba wysłania ramki nie zakończy się powodzeniem.

Podobnie jak warstwa łącza danych, również warstwa fizyczna modelu OSI została przez instytut IEEE podzielona na odrębne składniki. Uzyskana w ten sposób modularność zapewnia elastyczność w adaptowaniu nowych technologii. Dzięki modularności, modyfikacji wymaga jedynie mechanizm odpowiedzialny za połączenie z nowym medium transmisyjnym. Pozostałe funkcje warstwy fizycznej mogą być używane bez wprowadzania żadnych zmian. Wyróżniamy cztery następujące składniki warstwy fizycznej:

Razem komponenty te w pełni definiują przebieg transmisji między dwoma urządzeniami przyłączonymi do sieci. Definicja obejmuje rodzaje kabli, złączy kablowych, przypisania wyprowadzeń kabla, poziomu napięć, długości fali świetlnej, taktowanie oraz fizyczny interfejs sieciowy.

Fizyczna podwarstwa sygnałowa (PLS) - jest mechanizmem lokalnym terminali (DTE) wykorzystujących okablowanie typu 10BaseT określającym schemat sygnalizowania oraz złącze kabla nad-biornika. Interfejs jednostki przyłączeniowej (AUI) - określa specyfikacje nośnika. Fizyczne przyłącze nośnika (PMA) - definiuje procesy operacyjne i specyfikacje nad-biornika. Interfejs międzynośnikowy (MDI) - jest najbardziej zauważalną częścią warstwy fizycznej 802.3. Istnieje wiele interfejsów MDI, z których każdy opisuje mechanizmy niezbędne do obsługi transmisji przez różne nośniki.

Elementy AUI, PMA oraz MDI są często wbudowane w jedno urządzenie, określane w specyfikacji IEEE jako jednostka przyłączania nośnika lub jako jednostka MAU, która to jednostka jest niczym innym jak kartą sieciową.

IEEE definiuje pięć różnych interfejsów międzynośnikowych MDI dla sieci Ethernet działającej w paśmie podstawowym 10 Mbps. Interfejsy te pogrupowane są w moduły określające wszystkie aspekty warstwy fizycznej w stosunku do różnych nośników. Z pięciu interfejsów MDI dwa oparte są na kablu koncentrycznym, dwa na światłowodzie i jeden na miedzianej skrętce dwużyłowej.


10Base2, jak i większość interfejsów międzynośnikowych Ethernetu, wywodzi swoją nazwę z następującej konwencji: szybkości sygnału (w Mbps) + metoda transmisji (transmisja pasmem podstawowym) + maksymalna długość kabla w metrach, zaokrąglona do 100, a następnie podzielona przez 100. Sieci 10Base2 mogą być rozszerzane poza granicę 185 metrów za pomocą wzmacniaków, mostów lub routerów. Używając routerów do segmentacji Etherntetu, tworzy się segmenty 10Base2, które mogą być rozgałęziane do 30 razy, przy czym każde z rozgałęzień może obsłużyć do 64 urządzeń.


Interfejs 10Base5 wykorzystuje dużo grubszy koncentryk niż 10Base2. Skuteczność transmisji w przewodzie miedzianym jest bowiem funkcją grubości przewodnika. Im większa jest jego średnica, tym większą osiąga się szerokość pasma. W rezultacie, kabel 10Base5 może być rozgałęziany do 100 razy, przy zachowaniu maksymalnej liczby 64 urządzeń dla każdego rozgałęzienia.


Specyfikacja 10BaseT, wbrew powszechnemu przekonaniu, nie określa rodzaju użytego kabla. Dotyczy ona natomiast specjalnej techniki sygnalizowania dla nieekranowanej skrętki dwużyłowej wykorzystującej cztery przewody spełniające wymogi trzeciej kategorii wydajności. Nazwy przewodów wskazują na ich funkcje oraz biegunowość. Jedna para przewodów obsługuje dodatnie i ujemne bieguny obwodu nadawania. Druga para obsługuje dodatnie i ujemne bieguny obwodu odbioru. Wzmacniaki/koncentratory 10BaseT używają przyporządkowań wyprowadzeń, które umożliwiają tworzenie łączy z portami kart sieciowych. W normalnych warunkach urządzenie końcowe zawsze jest połączone z urządzeniem komunikacyjnym. Komplementarność interfejsów tych urządzeń pozwala łączyć je bezpośrednio za pomocą kabla, bez obaw o konflikty miedzy nadawaniem i odbiorem.


Specyfikacja 10BaseFL umożliwia transmisję w paśmie podstawowym z prędkością 10 Mbps przez wielofunkcyjny kabel światłowodowy o średnicy 62,5/125 mikrona. Maksymalna długość kabla wynosi 2 km. Podobnie jak skrętka dwużyłowa, również światłowód nie może być rozgałęziany. Jest on bowiem nośnikiem łączącym "z punktu do punktu". 10BaseFL może służyć do łączenia wzmacniaków ze sobą, a nawet do łączenia serwerów ze wzmacniakiem. Połączenie tego typu jest nieco droższe niż porównywalne z nim połączenie 10BaseT, ale może być stosowane w sieciach o większych rozmiarach.


Skrót 10BaseFOIRL oznacza transmisję w paśmie podstawowym z prędkością 10 Mbps z wykorzystaniem łączy światłowodowych pomiędzy wzmacniakami. 10BaseFOIRL wykorzystuje kabel światłowodowy o średnicy 8,3 mikrona, który musi być sterowany przez iniekcyjną diodę laserową (diodę ILD). Połączenie sprzętu i nośnika zapewnia efektywną transmisję sygnałów w paśmie podstawowym z prędkością 10 Mbps na odległość do 5 km. Rozwój technologii grupowania niezaawansowanych technologicznie architektur obliczeniowych przyczynił się do utworzenia czwartego obszaru funkcjonalnego sieci LAN - obszaru połączeń między grupami. Do połączeń między grupami stosuje się nośniki o jak najmniejszym czasie propagacji i jak największej szerokości pasma. Także pozostałe trzy obszary funkcjonalne mają własne wymagania dotyczące wydajności.


Projekt 802 zdefiniował podstawę normalizacyjną dla wszystkich rodzajów ramek ethernetowych. Minimalna długość ramki może wynosić 64 oktety, a maksymalna 1518 oktetów, przy czym do długości wlicza się część użyteczną (dane) i wszystkie nagłówki, z wyjątkiem Preambuły i ogranicznika początku ramki. Nagłówki służą do zidentyfikowania nadawcy i odbiorcy każdego z pakietów. Jedynym ograniczeniem tej identyfikacji jest to, że adres musi być unikatowy i 6-oktetowy. W pierwszych 12 oktetach każdej ramki zawarty jest 6-oktetowy adres docelowy (adres odbiorcy) i 6-oktetowy adres źródłowy (adres nadawcy). Adresy te są fizycznymi kodami adresowymi urządzeń, znanymi jako adresy MAC. Adres taki może być unikatowym adresem administrowanym globalnie, automatycznie przypisanym każdej karcie sieciowej przez jej producenta, albo adresem ustalonym podczas instalacji. Ten drugi adres znany jest także jako adres administrowany lokalnie. Adresy takie, choć potencjalnie użyteczne, były jednak wyjątkowo trudne do utrzymania. Z tego powodu już się ich nie używa.



komentarze

Copyright © 2008-2010 EPrace oraz autorzy prac.